A bijection between noncrossing and nonnesting partitions of types A, B and C

نویسنده

  • Ricardo Mamede
چکیده

The total number of noncrossing partitions of type Ψ is equal to the nth Catalan number 1 n+1 ( 2n n ) when Ψ = An−1, and to the corresponding binomial coefficient ( 2n n ) when Ψ = Bn or Cn. These numbers coincide with the corresponding number of nonnesting partitions. For type A, there are several bijective proofs of this equality; in particular, the intuitive map, which locally converts each crossing to a nesting, is one of them. In this paper we present a bijection between nonnesting and noncrossing partitions of types A,B and C that generalizes the type A bijection that locally converts each crossing to a nesting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A bijection between noncrossing and nonnesting partitions of types A and B

The total number of noncrossing partitions of type Ψ is the nth Catalan number 1 n+1 (

متن کامل

Bijections between noncrossing and nonnesting partitions for classical reflection groups

We present type preserving bijections between noncrossing and nonnesting partitions for all classical reflection groups, answering a question of Athanasiadis and Reiner. The bijections for the abstract Coxeter types B, C and D are new in the literature. To find them we define, for every type, sets of statistics that are in bijection with noncrossing and nonnesting partitions, and this correspon...

متن کامل

A bijection between noncrossing and nonnesting partitions for classical reflection groups

We present an elementary type preserving bijection between noncrossing and nonnesting partitions for all classical reflection groups, answering a question of Athanasiadis.

متن کامل

On Noncrossing and Nonnesting Partitions of Type D Alessandro Conflitti and Ricardo Mamede

We present an explicit bijection between noncrossing and nonnesting partitions of Coxeter systems of type D which preserves openers, closers and transients. 1. Overview The lattice of set partitions of a set of n elements can be interpreted as the intersection lattice for the hyperplane arragement corresponding to a root system of type An−1, i.e. the symmetric group of n objects, Sn. In particu...

متن کامل

On Noncrossing and Nonnesting Partitions for Classical Reflection Groups

The number of noncrossing partitions of {1, 2, . . . , n} with fixed block sizes has a simple closed form, given by Kreweras, and coincides with the corresponding number for nonnesting partitions. We show that a similar statement is true for the analogues of such partitions for root systems B and C, defined recently by Reiner in the noncrossing case and Postnikov in the nonnesting case. Some of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Contributions to Discrete Mathematics

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011